Click Chemistry Toolbox

- New Something Colfluor Dyes
- Click Chemistry Biotinylation Regent
- Fluorescent Click Chemistry Reagents
- Fluorescent Picoly Azides
- Metabolic Labeling Reagents
- Cleavable Click Chemistry Biotin Probes
- Biotin/Streptavidin-Free Enrichment Kits and Media
- New Something Kits

Introducing Alexa Fluor® Dyes analogs

Largest section of Click Chemistry AF™ Dyes (Alexa Fluor® Dyes analogs) available from our Click Chemistry Toolbox

Alexa Fluor® Dyes is a registered trademark of Invitrogen, part of Thermo Fisher Scientific. Click Chemistry Tools is not affiliated with or endorsed by Thermo Fisher Scientific. AF Dyes are GENERIC versions of Alexa Fluor® Dyes and ARE NOT manufactured, distributed, or affiliated in any way with Thermo Fisher Scientific.
General Information:

If you have a technical question about a product you received or have seen in the catalog, please send an e-mail to inquiries@clickchemistrytools.com or call us at (480) – 584 – 3340.

Material Safety Data Sheets
MSDS are available upon request.

Certificate of Analysis
A certificate of analysis (COA) will be sent with your product(s) if requested. The COA provides the test method used, the results, and the purity level of the product.

Re–Stocking Fee
Due to the cost of re–qualifying product, there is a charge of $250 for each previously un–opened vial/bottle that is returned. No previously opened product will be accepted.

Please note there are no returns on bulk quantity purchases.

Ordering Information:

All orders are accepted by e–mail, fax or online. We accept telephone technical inquiries between 9AM and 5PM, PST, Monday through Friday. The main contact information is listed below:

e–mail: sales@clickchemistrytools.com
Tel: 480 – 584 – 3340
Fax: 866 – 717 – 2037

Please include the following information to expedite your order:

Company name
Billing and shipping addresses and phone number
P.O # or Credit Card Information
Telephone number
Catalog number, product description, size, and quantity

Payment
We accept MasterCard, Visa, American Express, USD check, and Bank Transfers. Some international orders may require full or partial pre–payment.

Shipping and Storage Details
Products will usually ship the same day as ordered, if it is received by 3:00pm EST. We ship most products by FedEx overnight. Storage details will be shipped with each product. We recommend storing our products in the freezer at –20° for long term storage. Orders outside the United States are shipped by FedEx or DHL International Priority.
Click Chemistry Biotin Probes

Biotin – Azide
<table>
<thead>
<tr>
<th>Catalog#</th>
<th>Unit</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1265 – 5</td>
<td>5 mg</td>
<td>$79</td>
</tr>
<tr>
<td>1265 – 25</td>
<td>25 mg</td>
<td>$329</td>
</tr>
<tr>
<td>1265 – 100</td>
<td>100 mg</td>
<td>$1079</td>
</tr>
</tbody>
</table>

CAS: 1006592-62-6
MW: 615.34
Solubility: DMSO, DMF, MeOH
Description: **Exact replacement of Invitrogen’s Biotin Azide**
(PEG4 carboxamide-6-Azidohexanyl Biotin), Catalog number: B10184

Biotin – PEG3 – Azide
<table>
<thead>
<tr>
<th>Catalog#</th>
<th>Unit</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>AZ104 – 25</td>
<td>25 mg</td>
<td>$79</td>
</tr>
<tr>
<td>AZ104 – 100</td>
<td>100 mg</td>
<td>$179</td>
</tr>
<tr>
<td>AZ104 – 1000</td>
<td>1000 mg</td>
<td>$1079</td>
</tr>
</tbody>
</table>

CAS: 875770-36-6
MW: 444.55
Solubility: DMSO, DMF, MeOH
Description: Biotinylation reagent

Biotin Picolyl Azide
<table>
<thead>
<tr>
<th>Catalog#</th>
<th>Unit</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1167 – 5</td>
<td>5 mg</td>
<td>$129</td>
</tr>
<tr>
<td>1167 – 25</td>
<td>25 mg</td>
<td>$295</td>
</tr>
<tr>
<td>1167 – 100</td>
<td>100 mg</td>
<td>$895</td>
</tr>
</tbody>
</table>

CAS: n/a
MW: 622.74
Solubility: DMSO, DMF, MeOH
Description: Biotinylation reagent with superior in copper-catalyzed click reactions

Biotin – Alkyne
<table>
<thead>
<tr>
<th>Catalog#</th>
<th>Unit</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1266 – 5</td>
<td>5 mg</td>
<td>$79</td>
</tr>
<tr>
<td>1266 – 25</td>
<td>25 mg</td>
<td>$329</td>
</tr>
<tr>
<td>1266 – 100</td>
<td>100 mg</td>
<td>$1095</td>
</tr>
</tbody>
</table>

CAS: 1006592-45-5
MW: 528.66
Solubility: DMSO, DMF, THF, DCM
Description: **Exact replacement of Invitrogen’s Biotin Alkyne**
(PEG4 carboxamide-Propargyl Biotin), Catalog number: B10185

Biotin – PEG4 – Alkyne
<table>
<thead>
<tr>
<th>Catalog#</th>
<th>Unit</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>TA105 – 25</td>
<td>25 mg</td>
<td>$95</td>
</tr>
<tr>
<td>TA105 – 100</td>
<td>100 mg</td>
<td>$195</td>
</tr>
<tr>
<td>TA105 – 1000</td>
<td>1000 mg</td>
<td>$1095</td>
</tr>
</tbody>
</table>

CAS: 1262681-31-1
MW: 457.58
Solubility: DMSO, DMF, THF, DCM
Description: Biotinylation reagent

DBCO – PEG4– Biotin
<table>
<thead>
<tr>
<th>Catalog#</th>
<th>Unit</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>A105 – 10</td>
<td>10 mg</td>
<td>$149</td>
</tr>
<tr>
<td>A105 – 25</td>
<td>25 mg</td>
<td>$279</td>
</tr>
<tr>
<td>A105 – 100</td>
<td>100 mg</td>
<td>$895</td>
</tr>
</tbody>
</table>

CAS: 1255942-07-4
MW: 749.92
Solubility: DMSO, DMF, THF, MeOH
Description: Biotinylation reagent for Cu-free click chemistry

Can’t find a product?

Visit www.clickchemistrytools.com for a full list of Click Chemistry Biotin Probes
Trifunctional Click Chemistry Biotin Probes

Whilst biotin is a highly effective affinity label, fluorescent labels provide a more sensitive, quantitative, and convenient method for visualizing proteins. Trifunctional click chemistry probes that incorporate a ligation handle, a biotin and a fluorophore straightforwardly extended to combine the complementary benefits of both types of label. Dual-label TAMRA Biotin Azide probe can be readily incorporated into alkyne-tagged biomolecules through CuAAC ligation. For example, dual-labeled newly synthesized proteins, glycans, lipids, or DNA/RNA can be readily isolated by affinity purification and visualized by in-gel fluorescence.

Another very important advantage of dual label probes over regular biotin probes is built-in control. Each step of enrichment process can easily followed either by UV-Vis (550 nm) or by more sensitive fluorescence spectroscopy. After elution form streptavidin beads target proteins containing TAMRA label can be easily distinguished from non-specifically bound proteins and endogenously biotinylated proteins.

This new dual label probe should be useful to expand the new applications of standard biotin–streptavidin technology.

Fluorescein Biotin Azide

<table>
<thead>
<tr>
<th>Catalog#</th>
<th>Unit</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1274 – 1</td>
<td>1 mg</td>
<td>$95</td>
</tr>
<tr>
<td>1274 – 5</td>
<td>5 mg</td>
<td>$295</td>
</tr>
<tr>
<td>1274 – 25</td>
<td>25 mg</td>
<td>$1279</td>
</tr>
</tbody>
</table>

CAS: n/a
MW: 1156.44
Solubility: DMSO, DMF, MeOH
Description: Green-fluorescent dual-labeling probe that allows for visualization and affinity purification of alkyne-tagged molecules

TAMRA Biotin Azide

<table>
<thead>
<tr>
<th>Catalog#</th>
<th>Unit</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1048 – 1</td>
<td>1 mg</td>
<td>$95</td>
</tr>
<tr>
<td>1048 – 5</td>
<td>5 mg</td>
<td>$295</td>
</tr>
<tr>
<td>1048 – 25</td>
<td>25 mg</td>
<td>$1279</td>
</tr>
</tbody>
</table>

CAS: 1797415-74-7
MW: 1174.37
Solubility: DMSO, DMF, MeOH
Description: Red-fluorescent dual-labeling probe that allows for visualization and affinity purification of alkyne-tagged molecules

TAMRA Biotin Alkyne

<table>
<thead>
<tr>
<th>Catalog#</th>
<th>Unit</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1366 – 1</td>
<td>1 mg</td>
<td>$95</td>
</tr>
<tr>
<td>1366 – 5</td>
<td>5 mg</td>
<td>$295</td>
</tr>
<tr>
<td>1366 – 25</td>
<td>25 mg</td>
<td>$1279</td>
</tr>
</tbody>
</table>

CAS: n/a
MW: 1160.37
Solubility: DMSO, DMF, MeOH
Description: Red-fluorescent dual-labeling probe that allows for visualization and affinity purification of azide-tagged molecules.

Cy5 Biotin Azide

<table>
<thead>
<tr>
<th>Catalog#</th>
<th>Unit</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1233 – 1</td>
<td>1 mg</td>
<td>$179</td>
</tr>
<tr>
<td>1233 – 5</td>
<td>5 mg</td>
<td>$395</td>
</tr>
<tr>
<td>1233 – 25</td>
<td>25 mg</td>
<td>$1395</td>
</tr>
</tbody>
</table>

CAS: n/a
MW: 1494.81
Solubility: DMSO, DMF, MeOH
Description: Near-IR-fluorescent dual-labeling probe that allows for visualization and affinity purification of alkyne-tagged molecules.
Cleavable Trifunctional Click Chemistry Biotin Probes

Trifunctional Click Chemistry Probes that incorporate a ligation handle, a biotin and a fluorophore have become a popular tool for tandem labeling of proteins and subsequent detection or enrichment. However, due to the strong interaction between biotin and streptavidin harsh conditions are necessary for the elution of enriched proteins. This usually leads to contamination of the sample with non-specifically bound proteins and endogenously biotinylated proteins, which complicates target identification.

Cleavable Trifunctional Click Chemistry Probes overcome this major drawback of the streptavidin-biotin affinity purification. These probes contain a biotin moiety linked to a “clickable” group and fluorescent dye through a spacer arm containing a cleavable Dde linker. Dde moiety is stable to rigorous, denaturing wash conditions, acidic or basic conditions including generally applied buffer systems to which the biological sample may be exposed. At the same time Dde linker can be quantitatively cleaved under mild aqueous buffered conditions with 2% hydrazine.

Dde TAMRA Biotin Azide

<table>
<thead>
<tr>
<th>CAS:</th>
<th>n/a</th>
</tr>
</thead>
<tbody>
<tr>
<td>MW:</td>
<td>1397.68</td>
</tr>
<tr>
<td>Solubility:</td>
<td>DMSO, DMF, MeOH</td>
</tr>
<tr>
<td>Description:</td>
<td>Cleavable probe for detection/enrichment</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Catalog#</th>
<th>Unit</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1367 – 1</td>
<td>1 mg</td>
<td>$95</td>
</tr>
<tr>
<td>1367 – 5</td>
<td>5 mg</td>
<td>$329</td>
</tr>
<tr>
<td>1367 – 25</td>
<td>25 mg</td>
<td>$1395</td>
</tr>
</tbody>
</table>

Dde TAMRA Biotin Alkyne

<table>
<thead>
<tr>
<th>CAS:</th>
<th>n/a</th>
</tr>
</thead>
<tbody>
<tr>
<td>MW:</td>
<td>1411.70</td>
</tr>
<tr>
<td>Solubility:</td>
<td>DMSO, DMF, MeOH</td>
</tr>
<tr>
<td>Description:</td>
<td>Cleavable probe for detection/enrichment</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Catalog#</th>
<th>Unit</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1368 – 1</td>
<td>1 mg</td>
<td>$95</td>
</tr>
<tr>
<td>1368 – 5</td>
<td>5 mg</td>
<td>$329</td>
</tr>
<tr>
<td>1368 – 25</td>
<td>25 mg</td>
<td>$1395</td>
</tr>
</tbody>
</table>

Selected References:

Click Chemistry Tools offers ‘generic versions’ of Alexa Fluor® Dyes. Most AF™ Dyes are structurally identical to brand name Alexa Fluor® Dyes. The photophysical properties of our AF™ Dyes are also an exact match to Alexa Fluor® Dyes. Now researchers don’t have to choose between outstanding performance of Alexa Fluor® Dyes and reasonable price, Click Chemistry Tools’ AF™ Dyes offer the best of both worlds.

<table>
<thead>
<tr>
<th>Description</th>
<th>Ex/Em</th>
<th>Emission Color</th>
<th>Pkg. Size</th>
<th>Product #</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF™ 350 – Azide</td>
<td>346/445</td>
<td>Blue</td>
<td>1 mg</td>
<td>1267 – 1</td>
<td>$95</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 mg</td>
<td>1267 – 5</td>
<td>$295</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25 mg</td>
<td>1267 – 25</td>
<td>$895</td>
</tr>
<tr>
<td>AF™ 405 – Azide</td>
<td>399/422</td>
<td>Blue</td>
<td>1 mg</td>
<td>1307 – 1</td>
<td>$129</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 mg</td>
<td>1307 – 5</td>
<td>$395</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25 mg</td>
<td>1307 – 25</td>
<td>$1095</td>
</tr>
<tr>
<td>AF™ 488 – Azide</td>
<td>494/517</td>
<td>Green</td>
<td>1 mg</td>
<td>1275 – 1</td>
<td>$115</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 mg</td>
<td>1275 – 5</td>
<td>$395</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25 mg</td>
<td>1275 – 25</td>
<td>$1095</td>
</tr>
<tr>
<td>AF™ 532 – Azide</td>
<td>530/555</td>
<td>Orange</td>
<td>1 mg</td>
<td>1279 – 1</td>
<td>$129</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 mg</td>
<td>1279 – 5</td>
<td>$395</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25 mg</td>
<td>1279 – 25</td>
<td>$1295</td>
</tr>
<tr>
<td>AF™ 546 – Azide</td>
<td>554/574</td>
<td>Orange</td>
<td>1 mg</td>
<td>1283 – 1</td>
<td>$129</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 mg</td>
<td>1283 – 5</td>
<td>$395</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25 mg</td>
<td>1283 – 25</td>
<td>$1095</td>
</tr>
<tr>
<td>AF™ 555 – Azide</td>
<td>555/565</td>
<td>Red</td>
<td>1 mg</td>
<td>1287 – 1</td>
<td>$129</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 mg</td>
<td>1287 – 5</td>
<td>$395</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25 mg</td>
<td>1287 – 25</td>
<td>$1095</td>
</tr>
<tr>
<td>AF™ 568 – Azide</td>
<td>578/602</td>
<td>Red</td>
<td>1 mg</td>
<td>1291-1</td>
<td>$129</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 mg</td>
<td>1291-5</td>
<td>$395</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25 mg</td>
<td>1291-25</td>
<td>$1095</td>
</tr>
<tr>
<td>AF™ 594 – Azide</td>
<td>590/617</td>
<td>Near IR</td>
<td>1 mg</td>
<td>1295-1</td>
<td>$129</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 mg</td>
<td>1295-5</td>
<td>$395</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25 mg</td>
<td>1295-25</td>
<td>$1095</td>
</tr>
<tr>
<td>AF™ 647 – Azide</td>
<td>650/665</td>
<td>Near IR</td>
<td>1 mg</td>
<td>1299-1</td>
<td>$129</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 mg</td>
<td>1299-5</td>
<td>$395</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25 mg</td>
<td>1299-25</td>
<td>$1095</td>
</tr>
</tbody>
</table>

Alexa Fluor® Dyes is a registered trademark of Invitrogen, part of Thermo Fisher Scientific. Click Chemistry Tools is not affiliated with or endorsed by Thermo Fisher Scientific. AF Dyes are GENERIC versions of Alexa Fluor® Dyes and ARE NOT manufactured, distributed, or sold in any way with Thermo Fisher Scientific.
<table>
<thead>
<tr>
<th>Description</th>
<th>Ex/Em</th>
<th>Emission Color</th>
<th>Pkg. Size</th>
<th>Product #</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>OG 488 – Azide</td>
<td>496/524</td>
<td>Green</td>
<td>1 mg</td>
<td>1264-1</td>
<td>$95</td>
</tr>
<tr>
<td>Replacement of Invitrogen's Oregon Green® 488 – Azide (Catalog number: 010180)</td>
<td></td>
<td></td>
<td>5 mg</td>
<td>1264-5</td>
<td>$295</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25 mg</td>
<td>1264-25</td>
<td>$895</td>
</tr>
<tr>
<td>Carboxyrhodamine 110 – Azide</td>
<td>501/525</td>
<td>Green</td>
<td>1 mg</td>
<td>AZ105-1</td>
<td>$95</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 mg</td>
<td>AZ105-5</td>
<td>$179</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25 mg</td>
<td>AZ105-25</td>
<td>$479</td>
</tr>
<tr>
<td>TAMRA – Azide</td>
<td>545/565</td>
<td>Orange</td>
<td>1 mg</td>
<td>AZ109-1</td>
<td>$95</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 mg</td>
<td>AZ109-5</td>
<td>$179</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25 mg</td>
<td>AZ109-25</td>
<td>$479</td>
</tr>
<tr>
<td>5-TAMRA – Azide</td>
<td>545/565</td>
<td>Orange</td>
<td>1 mg</td>
<td>1245-1</td>
<td>$75</td>
</tr>
<tr>
<td>Replacement of Invitrogen's Tetramethylrhodamine Azide (Catalog number: T10182).</td>
<td></td>
<td></td>
<td>5 mg</td>
<td>1245-5</td>
<td>$139</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25 mg</td>
<td>1245-25</td>
<td>$395</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100 mg</td>
<td>1245-100</td>
<td>$795</td>
</tr>
<tr>
<td>Cy3 – Azide</td>
<td>556/565</td>
<td>Red</td>
<td>1 mg</td>
<td>AZ119-1</td>
<td>$115</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 mg</td>
<td>AZ119-5</td>
<td>$295</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25 mg</td>
<td>AZ119-25</td>
<td>$690</td>
</tr>
<tr>
<td>Cy5 – Azide</td>
<td>647/661</td>
<td>Near IR</td>
<td>1 mg</td>
<td>AZ118-1</td>
<td>$115</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 mg</td>
<td>AZ118-5</td>
<td>$295</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25 mg</td>
<td>AZ118-25</td>
<td>$690</td>
</tr>
<tr>
<td>Cy5.5 – Azide</td>
<td>678/694</td>
<td>Near IR</td>
<td>1 mg</td>
<td>1059-1</td>
<td>$115</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 mg</td>
<td>1059-5</td>
<td>$295</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25 mg</td>
<td>1059-25</td>
<td>$690</td>
</tr>
<tr>
<td>Cy7 – Azide</td>
<td>754/771</td>
<td>Near IR</td>
<td>1 mg</td>
<td>1025-1</td>
<td>$115</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 mg</td>
<td>1025-5</td>
<td>$295</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25 mg</td>
<td>1025-25</td>
<td>$690</td>
</tr>
</tbody>
</table>
Recent advances in design of copper chelating ligands such as THPTA or BTTAA improved kinetics of copper-catalyzed azide-alkyne cycloaddition reaction, or CuAAC, and greatly increased sensitivity of alkyne detection. Despite the recent improvements, CuAAC is not without limitations. The reaction kinetics is still slow for detection of low abundance targets. In addition, to achieve sufficient labeling efficiency, many protocols call for the use of relatively high concentrations of azide reagent (up to 50 μM), and copper (up to 2 mM), which might result in high background signal due to non-specific covalent labeling.

The next step in improving kinetics of CuAAC was the introduction of copper chelating moiety into azide reporter to raise the effective Cu(I) concentration at reaction site (Figure 2).

The rate of CuAAC reaction depends on concentrations of all reagents, including copper, thus the raise of the effective copper concentration at the reaction site dramatically increase the rate of CuAAC reaction without the need to increase concentration of azide reagent and copper.

The only practically useful azide bearing an internal copper-chelating motif that has been reported to date are electron-donating picolyl azides. The effect of internal copper-chelating motif on the kinetics of CuAAC, and consequently on sensitivity, is so great that it leads to several fold increase in signal intensity compared to conventional, non-chelating azides. This will be of special value for the detection of low abundance targets.

In addition to the gain in sensitivity, the use of picolyl-containing reporters allows for at least a tenfold reduction in the concentration of the copper catalyst without sacrificing sensitivity of alkyne detection.

Selected References:

Click Chemistry Tools offers the largest selection of picolyl azide conjugated to AF™ Dyes (generic Alexa Fluor® Dyes). Most AF™ Dyes are structurally identical to brand name Alexa Fluor® Dyes. Combination of exceptional reactivity of picolyl azide moiety with brightness AF™ Dyes makes these probes of special value not only for detection of low abundance target but also for all other applications where increased S/N ratio is great value.

<table>
<thead>
<tr>
<th>Description</th>
<th>Ex/Em</th>
<th>Emission Color</th>
<th>Pkg. Size</th>
<th>Product #</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF™ 350 – Picolyl Azide</td>
<td>346/445</td>
<td>Blue</td>
<td>1 mg</td>
<td>1268 – 1</td>
<td>$139</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 mg</td>
<td>1268 – 5</td>
<td>$395</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25 mg</td>
<td>1268 – 25</td>
<td>$1095</td>
</tr>
<tr>
<td>AF™ 405 – Picolyl Azide</td>
<td>399/422</td>
<td>Green</td>
<td>1 mg</td>
<td>1308 – 1</td>
<td>$139</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 mg</td>
<td>1308 – 5</td>
<td>$395</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25 mg</td>
<td>1308 – 25</td>
<td>$1095</td>
</tr>
<tr>
<td>AF™ 488 – Picolyl Azide</td>
<td>494/517</td>
<td>Green</td>
<td>1 mg</td>
<td>1276 – 1</td>
<td>$149</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 mg</td>
<td>1276 – 5</td>
<td>$395</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25 mg</td>
<td>1276 – 25</td>
<td>$1195</td>
</tr>
<tr>
<td>AF™ 532 – Picolyl Azide</td>
<td>530/555</td>
<td>Orange</td>
<td>1 mg</td>
<td>1280 – 1</td>
<td>$149</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 mg</td>
<td>1280 – 5</td>
<td>$395</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25 mg</td>
<td>1280 – 25</td>
<td>$1195</td>
</tr>
<tr>
<td>AF™ 546 – Picolyl Azide</td>
<td>554/574</td>
<td>Orange</td>
<td>1 mg</td>
<td>1284 – 1</td>
<td>$149</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 mg</td>
<td>1284 – 5</td>
<td>$395</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25 mg</td>
<td>1284 – 25</td>
<td>$1195</td>
</tr>
<tr>
<td>AF™ 555 – Picolyl Azide</td>
<td>555/565</td>
<td>Red</td>
<td>1 mg</td>
<td>1288 – 1</td>
<td>$149</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 mg</td>
<td>1288 – 5</td>
<td>$395</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25 mg</td>
<td>1288 – 25</td>
<td>$1195</td>
</tr>
<tr>
<td>AF™ 568 – Picolyl Azide</td>
<td>578/602</td>
<td>Red</td>
<td>1 mg</td>
<td>1292-1</td>
<td>$149</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 mg</td>
<td>1292-5</td>
<td>$395</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25 mg</td>
<td>1292-25</td>
<td>$1195</td>
</tr>
<tr>
<td>AF™ 594 – Picolyl Azide</td>
<td>590/617</td>
<td>Red</td>
<td>1 mg</td>
<td>1296-1</td>
<td>$149</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 mg</td>
<td>1296-5</td>
<td>$395</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25 mg</td>
<td>1296-25</td>
<td>$1195</td>
</tr>
<tr>
<td>AF™ 647 – Picolyl Azide</td>
<td>650/665</td>
<td>Near IR</td>
<td>1 mg</td>
<td>1300-1</td>
<td>$149</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 mg</td>
<td>1300-5</td>
<td>$395</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25 mg</td>
<td>1300-25</td>
<td>$1195</td>
</tr>
</tbody>
</table>

Alexa Fluor® Dyes is a registered trademark of Invitrogen, part of Thermo Fisher Scientific. Click Chemistry Tools is not affiliated with or endorsed by Thermo Fisher Scientific. AF Dyes are GENERIC versions of Alexa Fluor® Dyes and ARE NOT manufactured, distributed, or affiliated in any way with Thermo Fisher Scientific.
Fluorescent Picolyl Azides

<table>
<thead>
<tr>
<th>Description</th>
<th>Ex/Em</th>
<th>Emission Color</th>
<th>Pkg. Size</th>
<th>Product #</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAM Picolyl Azide (5/6-carboxyfluorescein)</td>
<td>496/521</td>
<td>Green</td>
<td>1 mg</td>
<td>1180 – 1</td>
<td>$139</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 mg</td>
<td>1180 – 5</td>
<td>$295</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25 mg</td>
<td>1180 – 25</td>
<td>$1095</td>
</tr>
<tr>
<td>5-TAMRA Picolyl Azide</td>
<td>545/565</td>
<td>Orange</td>
<td>1 mg</td>
<td>1254 – 5</td>
<td>$139</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 mg</td>
<td>1254 – 5</td>
<td>$295</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25 mg</td>
<td>1254 – 25</td>
<td>$795</td>
</tr>
<tr>
<td>Cy3 – Picolyl Azide</td>
<td>556/565</td>
<td>Red</td>
<td>1 mg</td>
<td>1178 – 1</td>
<td>$145</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 mg</td>
<td>1178 – 5</td>
<td>$395</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25 mg</td>
<td>1178 – 25</td>
<td>$975</td>
</tr>
<tr>
<td>Cy5 – Picolyl Azide</td>
<td>647/661</td>
<td>Near IR</td>
<td>1 mg</td>
<td>1177 – 1</td>
<td>$145</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 mg</td>
<td>1177 – 5</td>
<td>$395</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25 mg</td>
<td>1177 – 25</td>
<td>$975</td>
</tr>
<tr>
<td>Cy5.5 – Picolyl Azide</td>
<td>678/694</td>
<td>Near IR</td>
<td>1 mg</td>
<td>1182 – 1</td>
<td>$145</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 mg</td>
<td>1182 – 5</td>
<td>$395</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25 mg</td>
<td>1182 – 25</td>
<td>$1295</td>
</tr>
<tr>
<td>Cy7 – Picolyl Azide</td>
<td>754/771</td>
<td>Near IR</td>
<td>1 mg</td>
<td>1183 – 1</td>
<td>$145</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 mg</td>
<td>1183 – 5</td>
<td>$395</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25 mg</td>
<td>1183 – 25</td>
<td>$975</td>
</tr>
</tbody>
</table>

Biotin Picolyl Azide

- **CAS:** n/a
- **MW:** 622.74
- **Solubility:** DMSO, DMF, MeOH
- **Description:** Biotinylation reagent with superior in copper-catalyzed click reactions.

<table>
<thead>
<tr>
<th>Catalog#</th>
<th>Unit</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1167 – 5</td>
<td>5 mg</td>
<td>$129</td>
</tr>
<tr>
<td>1167 – 25</td>
<td>25 mg</td>
<td>$295</td>
</tr>
<tr>
<td>1167 – 100</td>
<td>100 mg</td>
<td>$895</td>
</tr>
</tbody>
</table>

Dde Biotin – Picolyl Azide

- **CAS:** n/a
- **MW:** 815.40
- **Solubility:** DMSO, DMF
- **Description:** Cleavable biotinylation reagent

<table>
<thead>
<tr>
<th>Catalog#</th>
<th>Unit</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1186 – 5</td>
<td>5 mg</td>
<td>$129</td>
</tr>
<tr>
<td>1186 – 10</td>
<td>10 mg</td>
<td>$225</td>
</tr>
<tr>
<td>1186 – 100</td>
<td>100 mg</td>
<td>$1295</td>
</tr>
</tbody>
</table>
Click Chemistry Tools offers the largest selection of terminal alkynes conjugated to AF™ Dyes (generic Alexa Fluor® Dyes). Most AF™ Dyes are structurally identical to brand name Alexa Fluor® Dyes. The photophysical properties of our AF™ Dyes are also an exact match to Alexa Fluor® Dyes. Now researchers don’t have to choose between outstanding performance of Alexa Fluor® Dyes and reasonable price, Click Chemistry Tools’ AF™ Dyes offer the best of both worlds.

<table>
<thead>
<tr>
<th>Description</th>
<th>Ex/Em</th>
<th>Emission Color</th>
<th>Pkg. Size</th>
<th>Product #</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF™ 350 – Alkyne</td>
<td>346/445</td>
<td>Blue</td>
<td>1 mg</td>
<td>1269 – 1</td>
<td>$95</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 mg</td>
<td>1269 – 5</td>
<td>$295</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25 mg</td>
<td>1269 – 25</td>
<td>$895</td>
</tr>
<tr>
<td>AF™ 405 – Alkyne</td>
<td>399/422</td>
<td>Green</td>
<td>1 mg</td>
<td>1309 – 1</td>
<td>$129</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 mg</td>
<td>1309 – 5</td>
<td>$395</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25 mg</td>
<td>1309 – 25</td>
<td>$1095</td>
</tr>
<tr>
<td>AF™ 488 – Alkyne</td>
<td>494/517</td>
<td>Green</td>
<td>1 mg</td>
<td>1277 – 1</td>
<td>$129</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 mg</td>
<td>1277 – 5</td>
<td>$395</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25 mg</td>
<td>1277 – 25</td>
<td>$1095</td>
</tr>
<tr>
<td>AF™ 532 – Alkyne</td>
<td>530/555</td>
<td>Orange</td>
<td>1 mg</td>
<td>1281 – 1</td>
<td>$129</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 mg</td>
<td>1281 – 5</td>
<td>$395</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25 mg</td>
<td>1281 – 25</td>
<td>$1095</td>
</tr>
<tr>
<td>AF™ 546 – Alkyne</td>
<td>554/574</td>
<td>Orange</td>
<td>1 mg</td>
<td>1285 – 1</td>
<td>$129</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 mg</td>
<td>1285 – 5</td>
<td>$395</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25 mg</td>
<td>1285 – 25</td>
<td>$1095</td>
</tr>
<tr>
<td>AF™ 555 – Alkyne</td>
<td>555/565</td>
<td>Red</td>
<td>1 mg</td>
<td>1289 – 1</td>
<td>$129</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 mg</td>
<td>1289 – 5</td>
<td>$395</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25 mg</td>
<td>1289 – 25</td>
<td>$1095</td>
</tr>
<tr>
<td>AF™ 568 – Alkyne</td>
<td>578/602</td>
<td>Red</td>
<td>1 mg</td>
<td>1293-1</td>
<td>$129</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 mg</td>
<td>1293-5</td>
<td>$395</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25 mg</td>
<td>1293-25</td>
<td>$1095</td>
</tr>
<tr>
<td>AF™ 594 – Alkyne</td>
<td>590/617</td>
<td>Red</td>
<td>1 mg</td>
<td>1297-1</td>
<td>$129</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 mg</td>
<td>1297-5</td>
<td>$395</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25 mg</td>
<td>1297-25</td>
<td>$1095</td>
</tr>
<tr>
<td>AF™ 647 – Alkyne</td>
<td>650/665</td>
<td>Near IR</td>
<td>1 mg</td>
<td>1301-1</td>
<td>$129</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 mg</td>
<td>1301-5</td>
<td>$395</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25 mg</td>
<td>1301-25</td>
<td>$1095</td>
</tr>
</tbody>
</table>
Fluorescent Alkynes

<table>
<thead>
<tr>
<th>Description</th>
<th>Ex/Em</th>
<th>Emission Color</th>
<th>Pkg. Size</th>
<th>Product #</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carboxyrhodamine 110 – Alkyne</td>
<td>501/525</td>
<td>Green</td>
<td>1 mg</td>
<td>TA106 – 1</td>
<td>$95</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 mg</td>
<td>TA106 – 5</td>
<td>$179</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25 mg</td>
<td>TA106 – 25</td>
<td>$419</td>
</tr>
<tr>
<td>TAMRA – Alkyne</td>
<td>545/565</td>
<td>Orange</td>
<td>1 mg</td>
<td>TA108 – 1</td>
<td>$105</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 mg</td>
<td>TA108 – 5</td>
<td>$179</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25 mg</td>
<td>TA108 – 25</td>
<td>$419</td>
</tr>
<tr>
<td>5-TAMRA – Alkyne</td>
<td>545/565</td>
<td>Orange</td>
<td>1 mg</td>
<td>1255 – 1</td>
<td>$75</td>
</tr>
<tr>
<td>Replacement of Invitrogen’s</td>
<td></td>
<td></td>
<td>5 mg</td>
<td>1255 – 5</td>
<td>$139</td>
</tr>
<tr>
<td>Tetramethylrhodamine Alkyne</td>
<td></td>
<td></td>
<td>25 mg</td>
<td>1255 – 25</td>
<td>$395</td>
</tr>
<tr>
<td>(Catalog number: T10183).</td>
<td></td>
<td></td>
<td>100 mg</td>
<td>1255-100</td>
<td>$795</td>
</tr>
<tr>
<td>Cy3 – Alkyne</td>
<td>556/565</td>
<td>Red</td>
<td>1 mg</td>
<td>TA117 – 1</td>
<td>$115</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 mg</td>
<td>TA117 – 5</td>
<td>$295</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25 mg</td>
<td>TA117 – 25</td>
<td>$790</td>
</tr>
<tr>
<td>Cy5 – Alkyne</td>
<td>647/661</td>
<td>Near IR</td>
<td>1 mg</td>
<td>TA116 – 1</td>
<td>$115</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 mg</td>
<td>TA116 – 5</td>
<td>$295</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25 mg</td>
<td>TA116 – 25</td>
<td>$790</td>
</tr>
<tr>
<td>Cy5.5 – Alkyne</td>
<td>678/694</td>
<td>Near IR</td>
<td>1 mg</td>
<td>1060 – 1</td>
<td>$105</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 mg</td>
<td>1060 – 5</td>
<td>$295</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25 mg</td>
<td>1060 – 25</td>
<td>$1095</td>
</tr>
<tr>
<td>Cy7 – Alkyne</td>
<td>753/775</td>
<td>Near IR</td>
<td>1 mg</td>
<td>1053 – 1</td>
<td>$105</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 mg</td>
<td>1053 – 5</td>
<td>$295</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25 mg</td>
<td>1053 – 25</td>
<td>$895</td>
</tr>
</tbody>
</table>
Click Chemistry Tools offers the largest selection of fluorescent probes for copper-less azide imaging. Our section of fluorescent probes includes AF™ Dyes, and classic dyes conjugated to DBCO alkynes. Most AF™ Dyes are structurally identical to brand name Alexa Fluor® Dyes. The photophysical properties of our AF™ Dyes are also exact match to Alexa Fluor® Dyes. Now researchers don’t have to choose between outstanding performance of Alexa Fluor® Dyes and reasonable price, Click Chemistry Tools’ AF™ Dyes offer the best of both worlds.

<table>
<thead>
<tr>
<th>Description</th>
<th>Ex/Em</th>
<th>Emission Color</th>
<th>Pkg. Size</th>
<th>Product #</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF™ 405 – DBCO</td>
<td>499/422</td>
<td>Blue</td>
<td>1 mg</td>
<td>1269–1</td>
<td>$95</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 mg</td>
<td>1269–5</td>
<td>$295</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25 mg</td>
<td>1269–25</td>
<td>$895</td>
</tr>
<tr>
<td>AF™ 430 – DBCO</td>
<td>430/545</td>
<td>Green</td>
<td>1 mg</td>
<td>1273–1</td>
<td>$129</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 mg</td>
<td>1273–5</td>
<td>$395</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25 mg</td>
<td>1273–25</td>
<td>$1095</td>
</tr>
<tr>
<td>AF™ 488 – DBCO</td>
<td>494/517</td>
<td>Green</td>
<td>1 mg</td>
<td>1277–1</td>
<td>$129</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 mg</td>
<td>1277–5</td>
<td>$395</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25 mg</td>
<td>1277–25</td>
<td>$1095</td>
</tr>
<tr>
<td>AF™ 532– DBCO</td>
<td>530/555</td>
<td>Orange</td>
<td>1 mg</td>
<td>1281–1</td>
<td>$129</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 mg</td>
<td>1281–5</td>
<td>$395</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25 mg</td>
<td>1281–25</td>
<td>$1095</td>
</tr>
<tr>
<td>AF™ 546 – DBCO</td>
<td>554/574</td>
<td>Orange</td>
<td>1 mg</td>
<td>1285–1</td>
<td>$129</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 mg</td>
<td>1285–5</td>
<td>$395</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25 mg</td>
<td>1285–25</td>
<td>$1095</td>
</tr>
<tr>
<td>AF™ 555 – DBCO</td>
<td>555/565</td>
<td>Red</td>
<td>1 mg</td>
<td>1289–1</td>
<td>$129</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 mg</td>
<td>1289–5</td>
<td>$395</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25 mg</td>
<td>1289–25</td>
<td>$1095</td>
</tr>
<tr>
<td>AF™ 568 – DBCO</td>
<td>578/602</td>
<td>Red</td>
<td>1 mg</td>
<td>1293–1</td>
<td>$129</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 mg</td>
<td>1293–5</td>
<td>$395</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25 mg</td>
<td>1293–25</td>
<td>$1095</td>
</tr>
<tr>
<td>AF™ 594 – DBCO</td>
<td>590/617</td>
<td>Red</td>
<td>1 mg</td>
<td>1297–1</td>
<td>$129</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 mg</td>
<td>1297–5</td>
<td>$395</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25 mg</td>
<td>1297–25</td>
<td>$1095</td>
</tr>
<tr>
<td>AF™ 647 – DBCO</td>
<td>650/665</td>
<td>Near IR</td>
<td>1 mg</td>
<td>1301–1</td>
<td>$129</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 mg</td>
<td>1301–5</td>
<td>$395</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25 mg</td>
<td>1301–25</td>
<td>$1095</td>
</tr>
</tbody>
</table>

Alexa Fluor® Dyes is a registered trademark of Invitrogen, part of Thermo Fisher Scientific. Click Chemistry Tools is not affiliated with or endorsed by Thermo Fisher Scientific. AF Dyes are GENERIC versions of Alexa Fluor® Dyes and ARE NOT manufactured, distributed, or affiliated in any way with Thermo Fisher Scientific.
A major shortcoming of visualization of alkyne-tagged biomolecule with fluorescent azide probes through CuAAC is the need to remove unreacted fluorescent probes. This is particularly problematic when imaging the intracellular environment, tissues of living organisms, or visualizing biomolecules in vivo. Difficulty to remove all unreacted fluorescent probes is also one of major contributor to background signal and non-specific binding.

To overcome this shortcoming Carolyn Bertozzi group has designed fluorogenic azide probes that are activated by Cu-catalyzed or metal-free click chemistry. These azide probes are not fluorescent until they react with alkynes. Termed the CalFluors, these probes possess emission maxima that range from green to far-red wavelengths, and enable sensitive biomolecule detection under no-wash conditions. A number of reports showed that CalFluor probes are an indispensable tool for sensitive visualization of metabolically labeled molecules (glycans, DNA, RNA, and proteins) in cells, developing zebrafish, and mouse brain tissue slices under no-wash conditions.

CalFluor Azide Probes

<table>
<thead>
<tr>
<th>Description</th>
<th>Ex/Em</th>
<th>Emission Color</th>
<th>Pkg. Size</th>
<th>Product #</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>CalFluor 488 Azide</td>
<td>500/521</td>
<td>Green</td>
<td>1 mg</td>
<td>1369–1</td>
<td>$195</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 mg</td>
<td>1369–5</td>
<td>$795</td>
</tr>
<tr>
<td>CalFluor 555 Azide</td>
<td>561/583</td>
<td>Red</td>
<td>1 mg</td>
<td>1370–1</td>
<td>$195</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 mg</td>
<td>1370–5</td>
<td>$795</td>
</tr>
<tr>
<td>CalFluor 580 Azide</td>
<td>591/609</td>
<td>Red</td>
<td>1 mg</td>
<td>1371–1</td>
<td>$195</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 mg</td>
<td>1371–5</td>
<td>$795</td>
</tr>
<tr>
<td>CalFluor 647 Azide</td>
<td>657/674</td>
<td>Near IR</td>
<td>1 mg</td>
<td>1372–1</td>
<td>$195</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 mg</td>
<td>1372–5</td>
<td>$795</td>
</tr>
</tbody>
</table>

CalFluor Azide Probes are covered by U.S. Patent No.: 9,410,958. Research use only. Visit our website or product into sheet for a full disclaimer.
The Click-&-Go™ Protein Reaction Buffer Kit provides researchers everything required to perform the click reaction on azide or alkyne tagged proteins with the corresponding click detection reagent for subsequent downstream analysis.

The performance and components of this kit are identical to Click-iT® Protein Reaction Buffer Kit from Thermo Fisher Scientific (Invitrogen).

<table>
<thead>
<tr>
<th>Product #</th>
<th>Description</th>
<th>Pkg. Size</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1262</td>
<td>Click-&-Go™ Protein Reaction Buffer Kit</td>
<td>1 kit</td>
<td>$129</td>
</tr>
</tbody>
</table>

The Click-&-Go™ Cell Reaction Buffer Kit provides researchers everything required to perform the click reaction on cells tagged with an azide or alkyne and with the corresponding click detection reagent for subsequent downstream analysis.

The performance and components of this kit are identical to Click-iT® Protein Reaction Buffer Kit from Thermo Fisher Scientific (Invitrogen).

<table>
<thead>
<tr>
<th>Product #</th>
<th>Description</th>
<th>Pkg. Size</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1263</td>
<td>Click-&-Go™ Cell Reaction Buffer Kit</td>
<td>1 kit</td>
<td>$129</td>
</tr>
</tbody>
</table>
Click Chemistry Kit and Auxiliary Reagents

Click-\&-Go™ Click Chemistry Reaction Buffer Kit

General purpose, all-inclusive kit provides researchers everything required to perform copper catalyzed click reaction between terminal alkyne and azide in aqueous or partially organic media. The kit includes sufficient reagents are provided for either 25 or 500 labeling reactions.

<table>
<thead>
<tr>
<th>Product #</th>
<th>Description</th>
<th>Pkg. Size</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1001</td>
<td>Click-&-Go™ Click Chemistry Reaction Buffer Kit 25 labeling reactions</td>
<td>1 kit</td>
<td>$135</td>
</tr>
<tr>
<td>1321</td>
<td>Click-&-Go™ XL Click Chemistry Reaction Buffer Kit 500 labeling reactions</td>
<td>1 kit</td>
<td>$895</td>
</tr>
</tbody>
</table>

Click Chemistry Auxiliary Reagents

THPTA

CAS: 760952-88-3
MW: 434.50
Solubility: Water, DMSO, DMF
Description: Water-soluble chelating agent

<table>
<thead>
<tr>
<th>Catalog#</th>
<th>Unit</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1010 – 100</td>
<td>100 mg</td>
<td>$55</td>
</tr>
<tr>
<td>1010 – 500</td>
<td>500 mg</td>
<td>$239</td>
</tr>
<tr>
<td>1010 – 1000</td>
<td>1000 mg</td>
<td>$395</td>
</tr>
</tbody>
</table>

BTTAA

CAS: 1334179-85-9
MW: 430.52
Solubility: Water, DMSO, DMF
Description: Water-soluble chelating agent

<table>
<thead>
<tr>
<th>Catalog#</th>
<th>Unit</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1236 – 100</td>
<td>100 mg</td>
<td>$129</td>
</tr>
<tr>
<td>1237 – 500</td>
<td>500 mg</td>
<td>$495</td>
</tr>
<tr>
<td>1237 – 1000</td>
<td>1000 mg</td>
<td>$895</td>
</tr>
</tbody>
</table>

BTTES

CAS: N/A
MW: 494.62
Solubility: Water, DMSO, DMF
Description: Water-soluble chelating agent

<table>
<thead>
<tr>
<th>Catalog#</th>
<th>Unit</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1237 – 100</td>
<td>100 mg</td>
<td>$149</td>
</tr>
<tr>
<td>1237 – 500</td>
<td>500 mg</td>
<td>$595</td>
</tr>
<tr>
<td>1237 – 1000</td>
<td>1000 mg</td>
<td>$1095</td>
</tr>
</tbody>
</table>

TBTA

CAS: 510758-28-8
MW: 530.62
Solubility: Water, DMSO, DMF
Description: Chelating agent

<table>
<thead>
<tr>
<th>Catalog#</th>
<th>Unit</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1061 – 100</td>
<td>100 mg</td>
<td>$49</td>
</tr>
<tr>
<td>1061 – 500</td>
<td>500 mg</td>
<td>$85</td>
</tr>
<tr>
<td>1061 – 1000</td>
<td>1000 mg</td>
<td>$120</td>
</tr>
</tbody>
</table>
Click-\&-Go™ Plus AF Imaging Kit is general purpose imaging kit that is designed to perform a high sensitivity imaging of moderate-to-low abundance targets, compounds that are sensitive to copper, and for all other applications where increased sensitivity and faster reaction times is of great value. The labeling kit utilizes copper-chelating picolyl azide that dramatically accelerates the Cu(I)-catalyzed azide–alkyne cycloaddition (CuAAC) reaction under conditions relevant to biomolecular labeling.

Each Click-\&Go™ Plus Imaging Kit includes 100 μg of AF dye-picolyl azide (also known as Alexa Fluor® dye-picolyl azide) and all of the reagents required to create a reaction cocktail with the optimal copper and chelate concentration for any click chemistry-based labeling or detection application.

<table>
<thead>
<tr>
<th>Product #</th>
<th>Description</th>
<th>Pkg. Size</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1311</td>
<td>Click-&-Go™ Plus Biotin Labeling Kit</td>
<td>1 kit</td>
<td>$189</td>
</tr>
<tr>
<td>1313</td>
<td>Click-&-Go™ Plus AF™ 405 Labeling Kit</td>
<td>1 kit</td>
<td>$189</td>
</tr>
<tr>
<td>1314</td>
<td>Click-&-Go™ Plus AF™ 488 Labeling Kit</td>
<td>1 kit</td>
<td>$189</td>
</tr>
<tr>
<td>1315</td>
<td>Click-&-Go™ Plus AF™ 532 Labeling Kit</td>
<td>1 kit</td>
<td>$189</td>
</tr>
<tr>
<td>1316</td>
<td>Click-&-Go™ Plus AF™ 568 Labeling Kit</td>
<td>1 kit</td>
<td>$189</td>
</tr>
<tr>
<td>1317</td>
<td>Click-&-Go™ Plus AF™ 555 Labeling Kit</td>
<td>1 kit</td>
<td>$189</td>
</tr>
<tr>
<td>1318</td>
<td>Click-&-Go™ Plus AF™ 568 Labeling Kit</td>
<td>1 kit</td>
<td>$189</td>
</tr>
<tr>
<td>1319</td>
<td>Click-&-Go™ Plus AF™ 594 Labeling Kit</td>
<td>1 kit</td>
<td>$189</td>
</tr>
<tr>
<td>1320</td>
<td>Click-&-Go™ Plus AF™ 647 Labeling Kit</td>
<td>1 kit</td>
<td>$189</td>
</tr>
</tbody>
</table>
Introduction into EdU Detection

Quantitative monitoring of DNA synthesis is used to assess cell health, determining genotoxicity, and the effect of test compounds on cancer cell proliferation. Several probes have been generated to evaluate DNA replication in cells, these probes act through incorporation into DNA during DNA duplication, a method that directly represents the proliferative potential of cells. Historically, radiolabeled [3H]-thymidine, was routinely utilized in experiments requiring examination of cell proliferation. This method was replaced by antibody-based detection of the nucleoside analog bromo-deoxyuridine (BrdU) which permits DNA replication measurements via microscopy. The disadvantages of using BrdU as a proliferative marker are cellular toxicity and the denaturing procedures that are required to enable the detection antibody access to the probe, which can be problematic for the use of additional stains.

More recently, 5-ethynyl-2’-deoxyuridine (EdU) and its analogs were developed as a chemical probe for DNA replication. Detection of newly synthesized DNA with incorporated EdU is based on a click reaction, a copper catalyzed covalent reaction between a picolyl azide and an alkyne. The fluorescent azides in use with EdU are small molecules, considerably smaller than detection antibodies used with BrdU, hence DNA denaturation is not required for the click chemistry reaction. Thus, limitations associated with the use of BrdU techniques, including multi-parameter staining, are overcome when using EdU to monitor cell proliferation. The small size of the dye picolyl azide allows for efficient detection of the incorporated EdU using mild conditions. Standard aldehyde-based fixation and detergent permeabilization are sufficient for the detection reagent to gain access to the DNA. Thus, limitations associated with the use of BrdU techniques, including multi-parameter staining, are overcome when using EdU to monitor cell proliferation.

One advantage of Click-&-Go Edu detection kits over other EdU assays is that researchers can order sufficient amount of EdU for a given experiment. For example, simple cell imaging experiments might required as little as 5 mg of EdU, though for a more complex, small animal experiments much larger quantities of EdU might be required.

The performance of our Click-&-Go EdU detection kits and its components are identical to Click-it or Click-it Plus Edu assay sold by Life Technologies, part of Thermo Fisher Scientific.

A few reson to switch to Click-&Go EdU Detection Kits

- Performance identical to Click-iT® EdU or Click-iT® Plus EdU Kits
- The same components, same procedure – no need to optimize procedure
- Flexible format – order required amount of EdU for your experiment
- Can be used with EdU analogs
- Cost effective – at least half price of Click-iT® EdU Kits

EdU detection kits that can be used under non-wash condition are coming soon. These kits are based on fluoregenic CalFluor azide probes (Page 14), and provide minimal background even under non-wash conditions.
Click-&-Go™ EdU Imaging Kits

Click-&-Go™ EdU AF Imaging Kits are optimized for imaging the thymidine analog EdU (not included), or any other alkyne containing nucleotide incorporated into DNA with fluorescent AF Azide (also sold under Alexa Fluor® dye brand name) via Cu(I)-catalyzed azide–alkyne cycloaddition (CuAAC) reaction. The kit includes blue fluorescent Hoechst 33342 dye for performing cell cycle analysis on samples from adherent cells. Sufficient amount of reagents provided for imaging 50 (18×18) coverslips using 500 μL of reaction buffer per test.

The performance and components (except EdU) of this kit are identical to Click-it® EdU Alexa Fluor® Imaging Kit sold by Life Technologies, a part of Thermo Fisher Scientific.

<table>
<thead>
<tr>
<th>Product #</th>
<th>Description</th>
<th>Pkg. Size</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1323</td>
<td>Click-&Go™ EdU AF 405 Imaging Kit</td>
<td>1 kit</td>
<td>$219</td>
</tr>
<tr>
<td>1324</td>
<td>Click-&Go™ EdU AF 488 Imaging Kit</td>
<td>1 kit</td>
<td>$219</td>
</tr>
<tr>
<td>1325</td>
<td>Click-&Go™ EdU AF 532 Imaging Kit</td>
<td>1 kit</td>
<td>$219</td>
</tr>
<tr>
<td>1326</td>
<td>Click-&Go™ EdU AF 555 Imaging Kit</td>
<td>1 kit</td>
<td>$219</td>
</tr>
<tr>
<td>1327</td>
<td>Click-&Go™ EdU AF 568 Imaging Kit</td>
<td>1 kit</td>
<td>$219</td>
</tr>
<tr>
<td>1328</td>
<td>Click-&Go™ EdU AF 594 Imaging Kit</td>
<td>1 kit</td>
<td>$219</td>
</tr>
<tr>
<td>1329</td>
<td>Click-&Go™ EdU AF 647 Imaging Kit</td>
<td>1 kit</td>
<td>$219</td>
</tr>
</tbody>
</table>
Click-&-Go Plus EdU Imaging Kits

Click-&-Go™ Plus EdU AF Imaging Kits are optimized for imaging the thymidine analog EdU (not included), or any other alkyne containing nucleotide incorporated into DNA with fluorescent AF Picolyl Azide (also sold under Alexa Fluor® Dye brand name) via Cu(I)-catalyzed azide–alkyne cycloaddition (CuAAC) reaction. The use of the picolyl azide combined with a copper protectant is the major advantage of Click-&-Go Plus EdU labeling kits, which achieves the same sensitive, reliable detection of cell proliferation as the original Click-&-Go EdU assay while also preserving the fluorescence of GFP, RFP and R-PE.

The kit includes blue fluorescent Hoechst 33342 dye for performing cell cycle analysis on samples from adherent cells. Sufficient amount of reagents provided for imaging 50 (18×18) coverslips using 500 μL of reaction buffer per test.

The performance and components (except EdU) of this kit are identical to Click-it® Plus EdU Alexa Fluor® Imaging Kit sold by Life Technologies, a part of Thermo Fisher Scientific.

<table>
<thead>
<tr>
<th>Product #</th>
<th>Description</th>
<th>Pkg. Size</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1347</td>
<td>Click-&Go™ Plus EdU AF 405 Imaging Kit</td>
<td>1 kit</td>
<td>$219</td>
</tr>
<tr>
<td>1348</td>
<td>Click-&Go™ Plus EdU AF 488 Imaging Kit</td>
<td>1 kit</td>
<td>$219</td>
</tr>
<tr>
<td>1349</td>
<td>Click-&Go™ Plus EdU AF 532 Imaging Kit</td>
<td>1 kit</td>
<td>$219</td>
</tr>
<tr>
<td>1350</td>
<td>Click-&Go™ Plus EdU AF 546 Imaging Kit</td>
<td>1 kit</td>
<td>$219</td>
</tr>
<tr>
<td>1351</td>
<td>Click-&Go™ Plus EdU AF 555 Imaging Kit</td>
<td>1 kit</td>
<td>$219</td>
</tr>
<tr>
<td>1352</td>
<td>Click-&Go™ Plus EdU AF 568 Imaging Kit</td>
<td>1 kit</td>
<td>$219</td>
</tr>
<tr>
<td>1353</td>
<td>Click-&Go™ Plus EdU AF 594 Imaging Kit</td>
<td>1 kit</td>
<td>$219</td>
</tr>
<tr>
<td>1354</td>
<td>Click-&Go™ Plus EdU AF 647 Imaging Kit</td>
<td>1 kit</td>
<td>$219</td>
</tr>
</tbody>
</table>
Click-&-Go™ Plus EdU Flow Cytometry Detection Kits

Click-&-Go™ Plus EdU Flow Cytometry Kits are optimized for detection of the thymidine analog EdU (not included), or any other alkyne containing nucleotide incorporated into newly synthesized DNA with fluorescent AF Picolyl Azide (also known as Alexa Fluor® Picolyl Azide) via Cu(I)-catalyzed azide–alkyne cycloaddition (CuAAC) reaction. Kits provide a simplified, more robust assay for analyzing DNA replication in proliferating cells as compared to traditional BrdU methods and radioactive nucleosides labeling, i.e., 3H-thymidine. Standard flow cytometry methods are used for determining the percentage of S-phase cells in the population.

The main advantage of EdU or any other alkyne containing nucleotide labeling is the small size of the picolyl azide dye that allows for efficient detection of the incorporated alkyne using mild conditions, while standard aldehyde-based fixation and detergent permeabilization are sufficient for the detection reagent to gain access to the DNA. In contrast, BrdU assays require DNA denaturation to expose the BrdU so that it may be detected with an anti-BrdU antibody, which in turn can result in signal alteration of the cell cycle distribution as well as destruction of antigen recognition sites. In contrast, the click chemistry based detection with fluorescent picolyl azide is compatible with cell cycle dyes, R-PE, R-PE tandems, and fluorescent proteins such as GFP, RFP, and mCherry.

Sufficient amount of reagents provided 50 or 100 reaction based on provided protocol. The performance and components (except EdU) of this kit are identical to Click-it® EdU Alexa Fluor® Flow Cytometry Assay Kits sold by Life Technologies, a part of Thermo Fisher Scientific.

<table>
<thead>
<tr>
<th>Product #</th>
<th>Description</th>
<th>Pkg. Size</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1373</td>
<td>Click-&-Go™ Plus EdU AF 350 Flow Cytometry Detection Kit, 50 reactions</td>
<td>1 kit</td>
<td>$249</td>
</tr>
<tr>
<td>1374</td>
<td>Click-&-Go™ Plus EdU AF 350 Flow Cytometry Detection Kit, 100 reactions</td>
<td>1 kit</td>
<td>$449</td>
</tr>
<tr>
<td>1375</td>
<td>Click-&-Go™ Plus EdU AF 488 Flow Cytometry Detection Kit, 50 reactions</td>
<td>1 kit</td>
<td>$249</td>
</tr>
<tr>
<td>1376</td>
<td>Click-&-Go™ Plus EdU AF 488 Flow Cytometry Detection Kit, 100 reactions</td>
<td>1 kit</td>
<td>$449</td>
</tr>
<tr>
<td>1377</td>
<td>Click-&-Go™ Plus EdU AF 594 Flow Cytometry Detection Kit, 50 reaction</td>
<td>1 kit</td>
<td>$249</td>
</tr>
<tr>
<td>1378</td>
<td>Click-&-Go™ Plus EdU AF 594 Flow Cytometry Detection Kit, 100 reaction</td>
<td>1 kit</td>
<td>$449</td>
</tr>
<tr>
<td>1379</td>
<td>Click-&-Go™ Plus EdU AF 647 Flow Cytometry Detection Kit, 50 reaction</td>
<td>1 kit</td>
<td>$249</td>
</tr>
<tr>
<td>1380</td>
<td>Click-&-Go™ Plus EdU AF 647 Flow Cytometry Detection Kit, 100 reaction</td>
<td>1 kit</td>
<td>$449</td>
</tr>
<tr>
<td>1381</td>
<td>Click-&-Go™ Plus EdU PB Flow Cytometry Detection Kit, 50 reaction</td>
<td>1 kit</td>
<td>$249</td>
</tr>
<tr>
<td>1382</td>
<td>Click-&-Go™ Plus EdU PB Flow Cytometry Detection Kit, 100 reaction</td>
<td>1 kit</td>
<td>$449</td>
</tr>
</tbody>
</table>
Cleavable Click Chemistry Biotin Probes

DADPS Biotin Probes

Extraordinary strength of the streptavidin-biotin interaction allows for efficient capturing of even highly dilute targets; however, it makes recovery of proteins from affinity resins challenging. Conventional methods to elute biotinylated proteins from immobilized avidin include the following: (i) denaturation of streptavidin by boiling the resin in a denaturing buffer that may include high concentrations of chaotropic salts, (ii) trypsin digestion of proteins while they are bound to the resin, or (iii) elution of proteins with excess free biotin. These protocols can co-elute contaminant proteins by releasing nonspecifically bound proteins and/or naturally biotinylated proteins concurrently with labeled proteins. In addition, some of these methods can cause elution of high levels of resin-based peptides along with the proteins of interest, resulting in further sample contamination.

DADPS (dialkoxydiphenylsilane) Biotin probes eliminate a major limitation of the streptavidin-biotin affinity purification. This reagent contains a biotin moiety linked to an azide moiety through a spacer arm containing a cleavable DADPS linker. Captured biomolecules can be efficiently released under mild conditions (5% or 10% formic acid, 0.5 h) and the small molecular fragment left on the labeled protein following cleavage. These features make the DADPS probe especially attractive for use in biomolecular labeling and proteomic studies.

<table>
<thead>
<tr>
<th>DADPS Biotin Azide</th>
<th>Catalog#</th>
<th>Unit</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAS: n/a</td>
<td>1330 – 1</td>
<td>1 mg</td>
<td>$79</td>
</tr>
<tr>
<td>MW: 866.19</td>
<td>1330 – 5</td>
<td>5 mg</td>
<td>$195</td>
</tr>
<tr>
<td>Solubility: DMSO, DMF</td>
<td>1330 – 25</td>
<td>25 mg</td>
<td>$479</td>
</tr>
<tr>
<td>Description:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DADPS Biotin Alkyne</th>
<th>Catalog#</th>
<th>Unit</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAS: n/a</td>
<td>1331 – 1</td>
<td>1 mg</td>
<td>$79</td>
</tr>
<tr>
<td>MW: 827.12</td>
<td>1331 – 5</td>
<td>5 mg</td>
<td>$195</td>
</tr>
<tr>
<td>Solubility: DMSO, DMF</td>
<td>1331 – 25</td>
<td>25 mg</td>
<td>$479</td>
</tr>
<tr>
<td>Description:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Selected References:

Cleavable Click Chemistry Biotin Probes

Photocleavable Biotin Probes

A major advantage of photocleavable (PC) linker over all other cleavable linkers is a reagent-free release of the captured biomolecules from streptavidin. This unique property of the photocleavable (PC) linker has promoted its application as a tool for separating, purifying, and identifying desired target biomolecules. PC probes contain a biotin moiety linked to a ‘clickable’ group through a spacer arm containing a photocleavable moiety. Captured biomolecules can be efficiently photoreleased, typically >90% in 5-25 minutes using an inexpensive, near-UV, low intensity lamp (e.g. 365 nm lamp at 1-5 mW/cm²).

PC Biotin – Azide

<table>
<thead>
<tr>
<th>Catalog#</th>
<th>Unit</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1119 – 10</td>
<td>10 mg</td>
<td>$179</td>
</tr>
<tr>
<td>1119 – 25</td>
<td>25 mg</td>
<td>$329</td>
</tr>
<tr>
<td>1119 – 100</td>
<td>100 mg</td>
<td>$1095</td>
</tr>
</tbody>
</table>

MW: 825.37
Solubility: DMSO, DMF, THF, DCM
Description: Photocleavable biotinylation reagent

PC Biotin – Alkyne

<table>
<thead>
<tr>
<th>Catalog#</th>
<th>Unit</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1118 – 10</td>
<td>10 mg</td>
<td>$179</td>
</tr>
<tr>
<td>1118 – 25</td>
<td>25 mg</td>
<td>$329</td>
</tr>
<tr>
<td>1118 – 100</td>
<td>100 mg</td>
<td>$1095</td>
</tr>
</tbody>
</table>

MW: 780.34
Solubility: DMSO, DMF, THF, DCM
Description: Photocleavable biotinylation reagent

PC DBCO – Biotin

<table>
<thead>
<tr>
<th>Catalog#</th>
<th>Unit</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1120 – 10</td>
<td>10 mg</td>
<td>$179</td>
</tr>
<tr>
<td>1120 – 25</td>
<td>25 mg</td>
<td>$329</td>
</tr>
<tr>
<td>1120 – 100</td>
<td>100 mg</td>
<td>$1095</td>
</tr>
</tbody>
</table>

MW: 1002.14
Solubility: DMSO, DMF, THF, DCM
Description: Photocleavable biotinylation reagent

Selected References:

Visit www.clickchemistrytools.com to browse entire selection of cleavable biotin probes
Cleavable Click Chemistry Biotin Probes

Dde Biotin Probes

Novel click chemistry probes for enrichment of azide- or alkyne-tagged biomolecules that overcome a major drawback of the streptavidin-biotin affinity purification associated with extraordinary strength of the streptavidin-biotin interaction. These probes contain a biotin moiety linked to a “clickable” group through a spacer arm containing a Dde linker. Dde moiety is stable to rigorous, denaturing wash conditions, acidic or basic conditions including generally applied buffer systems to which the biological sample may be exposed. At the same time Dde linker can be quantitatively cleaved under mild aqueous buffered conditions with 2% hydrazine. Finally, the cleaved moiety that remains on the modified peptide minimally changes the peptide mass and generates an additional positive charge, which facilitates peptide sequencing by ETD.

Dde Biotin – Azide

<table>
<thead>
<tr>
<th>CAS:</th>
<th>n/a</th>
</tr>
</thead>
<tbody>
<tr>
<td>MW:</td>
<td>695.37</td>
</tr>
<tr>
<td>Solubility:</td>
<td>DMSO, DMF</td>
</tr>
<tr>
<td>Description:</td>
<td>Cleavable biotinylation reagent</td>
</tr>
</tbody>
</table>

Catalog# Unit Price

<table>
<thead>
<tr>
<th>Catalog#</th>
<th>Unit</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1136 – 10</td>
<td>10 mg</td>
<td>$179</td>
</tr>
<tr>
<td>1136 – 25</td>
<td>25 mg</td>
<td>$329</td>
</tr>
<tr>
<td>1136 – 100</td>
<td>100 mg</td>
<td>$1095</td>
</tr>
</tbody>
</table>

Dde Biotin – Picolyl Azide

<table>
<thead>
<tr>
<th>CAS:</th>
<th>n/a</th>
</tr>
</thead>
<tbody>
<tr>
<td>MW:</td>
<td>815.40</td>
</tr>
<tr>
<td>Solubility:</td>
<td>DMSO, DMF</td>
</tr>
<tr>
<td>Description:</td>
<td>Cleavable biotinylation reagent</td>
</tr>
</tbody>
</table>

Catalog# Unit Price

<table>
<thead>
<tr>
<th>Catalog#</th>
<th>Unit</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1186 – 5</td>
<td>5 mg</td>
<td>$129</td>
</tr>
<tr>
<td>1186 – 10</td>
<td>10 mg</td>
<td>$225</td>
</tr>
<tr>
<td>1186 – 100</td>
<td>100 mg</td>
<td>$1295</td>
</tr>
</tbody>
</table>

Dde Biotin – Alkyne

<table>
<thead>
<tr>
<th>CAS:</th>
<th>n/a</th>
</tr>
</thead>
<tbody>
<tr>
<td>MW:</td>
<td>650.83</td>
</tr>
<tr>
<td>Solubility:</td>
<td>DMSO, DMF</td>
</tr>
<tr>
<td>Description:</td>
<td>Cleavable biotinylation reagent</td>
</tr>
</tbody>
</table>

Catalog# Unit Price

<table>
<thead>
<tr>
<th>Catalog#</th>
<th>Unit</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1137 – 10</td>
<td>10 mg</td>
<td>$179</td>
</tr>
<tr>
<td>1137 – 25</td>
<td>25 mg</td>
<td>$329</td>
</tr>
<tr>
<td>1137 – 100</td>
<td>100 mg</td>
<td>$1095</td>
</tr>
</tbody>
</table>

Selected References:

Cleavable Click Chemistry Biotin Probes

Diazo Biotin Probes

Diazo benzene-based biotin probes can be chemoselectively cleaved in under mild aqueous buffered conditions with 100 mM sodium dithionite. Diazobenzene linker is stable towards acidic or basic conditions, including generally applied buffer systems to which the biological sample may be exposed.

Diazo Biotin – Azide

- CAS: 1339202-33-3
- MW: 711.83
- Solubility: DMSO, DMF
- Description: Cleavable biotinylation reagent

<table>
<thead>
<tr>
<th>Catalog#</th>
<th>Unit</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1041 – 10</td>
<td>10 mg</td>
<td>$179</td>
</tr>
<tr>
<td>1041 – 25</td>
<td>25 mg</td>
<td>$329</td>
</tr>
<tr>
<td>1041 – 100</td>
<td>100 mg</td>
<td>$1095</td>
</tr>
</tbody>
</table>

Diazo Biotin – Alkyne

- Catalog#: n/a
- MW: 795.54
- Solubility: DMSO, DMF
- Description: Cleavable biotinylation reagent

<table>
<thead>
<tr>
<th>Catalog#</th>
<th>Unit</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1042 – 10</td>
<td>10 mg</td>
<td>$179</td>
</tr>
<tr>
<td>1042 – 25</td>
<td>25 mg</td>
<td>$329</td>
</tr>
<tr>
<td>1042 – 100</td>
<td>100 mg</td>
<td>$649</td>
</tr>
</tbody>
</table>

Diazo DBCO – Biotin

- CAS: n/a
- MW: 973.15
- Solubility: DMSO, DMF, THF, DCM
- Description: Cleavable biotinylation reagent

<table>
<thead>
<tr>
<th>Catalog#</th>
<th>Unit</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1043 – 10</td>
<td>10 mg</td>
<td>$179</td>
</tr>
<tr>
<td>1043 – 25</td>
<td>25 mg</td>
<td>$329</td>
</tr>
<tr>
<td>1043 – 100</td>
<td>100 mg</td>
<td>$1095</td>
</tr>
</tbody>
</table>

Selected References:

Can’t find a product?

Let us know and our team of highly skilled chemists might add it to our catalog.

Visit www.clickchemistrytools.com for a full list of cleavable probes
Metaboling Labeling Reagents

<table>
<thead>
<tr>
<th>L-azido homoalanine (AHA)</th>
<th>Catalog#</th>
<th>Unit</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAS: 942518-29-8</td>
<td>1066 – 25</td>
<td>25 mg</td>
<td>$129</td>
</tr>
<tr>
<td>MW: 180.58</td>
<td>1066 – 100</td>
<td>100 mg</td>
<td>$235</td>
</tr>
<tr>
<td>Solubility: Water, MeOH, DMSO</td>
<td>1066 – 1000</td>
<td>1000 mg</td>
<td>$495</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>L-homopropargylglycine (HPG)</th>
<th>Catalog#</th>
<th>Unit</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAS: 98891-36-2</td>
<td>1067 – 25</td>
<td>25 mg</td>
<td>$95</td>
</tr>
<tr>
<td>MW: 127.14</td>
<td>1067 – 100</td>
<td>100 mg</td>
<td>$195</td>
</tr>
<tr>
<td>Solubility: Water, MeOH, DMSO</td>
<td>1067 – 1000</td>
<td>1000 mg</td>
<td>$1095</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5-ethynyl-2'-deoxyuridine (EdU)</th>
<th>Catalog#</th>
<th>Unit</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAS: 61135-33-9</td>
<td>1149 – 25</td>
<td>25 mg</td>
<td>$45</td>
</tr>
<tr>
<td>MW: 252.23</td>
<td>1149 – 100</td>
<td>100 mg</td>
<td>$95</td>
</tr>
<tr>
<td>Solubility: Water, MeOH, DMSO</td>
<td>1149 – 1000</td>
<td>1000 mg</td>
<td>$565</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5-ethynyl uridine (5-EU)</th>
<th>Catalog#</th>
<th>Unit</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAS: 69075-42-9</td>
<td>1261 – 10</td>
<td>10 mg</td>
<td>$79</td>
</tr>
<tr>
<td>MW: 268.22</td>
<td>1261 – 25</td>
<td>25 mg</td>
<td>$179</td>
</tr>
<tr>
<td>Solubility: Water, MeOH, DMSO</td>
<td>1261 – 100</td>
<td>100 mg</td>
<td>$495</td>
</tr>
<tr>
<td></td>
<td>1261 – 500</td>
<td>500 mg</td>
<td>$1195</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N-azidoacetylmannosamine-tetraacylated (Ac4ManNAz)</th>
<th>Catalog#</th>
<th>Unit</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAS: 361154-30-5</td>
<td>1084 – 5</td>
<td>5 mg</td>
<td>$129</td>
</tr>
<tr>
<td>MW: 430.37</td>
<td>1084 – 25</td>
<td>25 mg</td>
<td>$235</td>
</tr>
<tr>
<td>Solubility: DMSO, DMF, MeOH</td>
<td>1084 – 100</td>
<td>100 mg</td>
<td>$595</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N-(4-pentynoyl)-mannosamine-tetraacylated (Ac4ManNAl)</th>
<th>Catalog#</th>
<th>Unit</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAS: 935658-93-8</td>
<td>1154 – 5</td>
<td>5 mg</td>
<td>$129</td>
</tr>
<tr>
<td>MW: 427.40</td>
<td>1154 – 25</td>
<td>25 mg</td>
<td>$235</td>
</tr>
<tr>
<td>Solubility: DMSO, DMF, MeOH</td>
<td>1154 – 100</td>
<td>100 mg</td>
<td>$595</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N-azidoacetylglucosamine-tetraacylated (Ac4GlcNAz)</th>
<th>Catalog#</th>
<th>Unit</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAS: 98924-81-3</td>
<td>1085 – 5</td>
<td>5 mg</td>
<td>$129</td>
</tr>
<tr>
<td>MW: 430.37</td>
<td>1085 – 25</td>
<td>25 mg</td>
<td>$235</td>
</tr>
<tr>
<td>Solubility: DMSO, DMF, MeOH</td>
<td>1085 – 100</td>
<td>100 mg</td>
<td>$595</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N-(4-pentynoyl)-glucosamine tetraacylated (Ac4GlcNAl)</th>
<th>Catalog#</th>
<th>Unit</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAS: 1361993-37-4</td>
<td>1155 – 5</td>
<td>5 mg</td>
<td>$129</td>
</tr>
<tr>
<td>MW: 427.40</td>
<td>1155 – 25</td>
<td>25 mg</td>
<td>$235</td>
</tr>
<tr>
<td>Solubility: DMSO, DMF, MeOH</td>
<td>1155 – 100</td>
<td>100 mg</td>
<td>$595</td>
</tr>
</tbody>
</table>
Metaboling Labeling Reagents

N-N-azidoacetylgalactosamine-tetraacylated (Ac₄GalNAz)
- CAS: 653600-56-7
- MW: 430.37
- Solubility: DMSO, DMF, MeOH

<table>
<thead>
<tr>
<th>Catalog#</th>
<th>Unit</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1086 – 5</td>
<td>5 mg</td>
<td>$129</td>
</tr>
<tr>
<td>1086 – 25</td>
<td>25 mg</td>
<td>$235</td>
</tr>
<tr>
<td>1086 – 100</td>
<td>100 mg</td>
<td>$595</td>
</tr>
</tbody>
</table>

N-(4-pentynoyl)-galactosamine tetraacylated (Ac₄GalNAI)
- CAS: 1658458-26-4
- MW: 427.40
- Solubility: DMSO, DMF, MeOH

<table>
<thead>
<tr>
<th>Catalog#</th>
<th>Unit</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1156 – 5</td>
<td>5 mg</td>
<td>$129</td>
</tr>
<tr>
<td>1156 – 25</td>
<td>25 mg</td>
<td>$235</td>
</tr>
<tr>
<td>1156 – 100</td>
<td>100 mg</td>
<td>$595</td>
</tr>
</tbody>
</table>

Kdo-Azide
- CAS: 1380099-68-2
- MW: 280.24
- Solubility: DMSO, DMF, MeOH

<table>
<thead>
<tr>
<th>Catalog#</th>
<th>Unit</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1241 – 10</td>
<td>10 mg</td>
<td>$195</td>
</tr>
<tr>
<td>1241 – 25</td>
<td>25 mg</td>
<td>$395</td>
</tr>
<tr>
<td>1241 – 100</td>
<td>100 mg</td>
<td>$895</td>
</tr>
</tbody>
</table>

6-azido-6-deoxy-N-acetyl-glucosamine triacylated (Ac₃-6AzGlcNAc)
- CAS: n/a
- MW: 372.33
- Solubility: DMSO, DMF, MeOH

<table>
<thead>
<tr>
<th>Catalog#</th>
<th>Unit</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1258 – 5</td>
<td>5 mg</td>
<td>$129</td>
</tr>
<tr>
<td>1258 – 25</td>
<td>25 mg</td>
<td>$235</td>
</tr>
<tr>
<td>1258 – 100</td>
<td>100 mg</td>
<td>$595</td>
</tr>
</tbody>
</table>

Alkynyl Stearic Acid
- CAS: 34450-18-5
- MW: 280.45
- Solubility: DMSO, DMF, DCM, THF

<table>
<thead>
<tr>
<th>Catalog#</th>
<th>Unit</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1166 – 5</td>
<td>5 mg</td>
<td>$95</td>
</tr>
<tr>
<td>1166 – 25</td>
<td>25 mg</td>
<td>$195</td>
</tr>
<tr>
<td>1166 – 100</td>
<td>100 mg</td>
<td>$495</td>
</tr>
</tbody>
</table>

Alkynyl Palmitic Acid
- CAS: 99208-90-9
- MW: 252.39
- Solubility: DMSO, DMF, DCM, THF

<table>
<thead>
<tr>
<th>Catalog#</th>
<th>Unit</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1165 – 5</td>
<td>5 mg</td>
<td>$79</td>
</tr>
<tr>
<td>1165 – 25</td>
<td>25 mg</td>
<td>$195</td>
</tr>
<tr>
<td>1165 – 100</td>
<td>100 mg</td>
<td>$495</td>
</tr>
</tbody>
</table>

Alkynyl Myristic Acid
- CAS: 82909-47-5
- MW: 224.32
- Solubility: DMSO, DMF, DCM, THF

<table>
<thead>
<tr>
<th>Catalog#</th>
<th>Unit</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1164 – 5</td>
<td>5 mg</td>
<td>$79</td>
</tr>
<tr>
<td>1164 – 25</td>
<td>25 mg</td>
<td>$195</td>
</tr>
<tr>
<td>1164 – 100</td>
<td>100 mg</td>
<td>$495</td>
</tr>
</tbody>
</table>

Visit www.clickchemistrytools.com for a complete list of metabolic labeling reagents
Overview

Click & Go™ enrichment kits is an efficient, biotin/streptavidin–free tool for capturing azide– or alkyne–tagged biomolecules onto an agarose resin via click reaction. Superior to biotin or lectin based enrichment approaches. Ideal for covalent capture of specific sub–classes of proteins which have been metabolically, enzymatically, or chemically azido– or alkyne–tagged onto a resin via Cu(I)–catalyzed azide–alkyne cycloaddition (CuAAC) or strain–promoted azide–alkyne cycloaddition (SPAAC) reactions. The resin containing the covalently attached proteins can be washed with high stringency, virtually eliminating any non–specifically bound proteins. Upon protease digestion, it yields a highly specific peptide pool that is ideal for mass spectroscopy (e.g., LC MS/MS) based analysis.

Highlights

- Far superior digest purity compared to biotin – SA digest
- Affinity resin is adaptable to column and batch affinity chromatography techniques
- Available as stand – alone reagent, or kit format
- Substantially reduced pull–out cost compare to conventional biotin – SA protocol

Click&Go™ Enrichment Platform

Step 1: Incubate with Click&Go™ Enrichment Resin

Step 2: Wash

Step 3: On–resin digestion

Visit www.clickchemistrytools.com for more detailed information
Biotin – Streptavidin Enrichment Protocol

1. Treat cells with metabolic labeling reagent
2. Lyse cell pellet
3. Label with biotin reagent
4. Remove excess biotin reagent
5. Resolubilize protein
6. Incubate with streptavidin agarose
7. Less stringent wash
8. On–resin digestion
9. LC MS/MS

Click&Go™ Protein Enrichment Protocol

1. Treat cells with metabolic labeling reagent
2. Lyse cell pellet
3. Incubate with Click&Go™ enrichment media
4. Label with biotin reagent
5. Remove excess biotin reagent
6. Resolubilize protein
7. Incubate with streptavidin agarose
8. Stringent wash
9. On–resin digestion
10. LC MS/MS

Figure 3. Schematic representation of pull-down workflows for biotin–streptavidin and Click&Go™ enrichment protocols.
Click Chemistry Capture Kit

All-inclusive kit for covalent capture of metabolically, azido- or alkyne-tagged biopolymers. The kit includes all necessary reagents for click chemistry capture and prevents non-specific binding to alkyne- or azide-modified resins.

<table>
<thead>
<tr>
<th>Product #</th>
<th>Description</th>
<th>Pkg. Size</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1065</td>
<td>Click Chemistry Capture Kit</td>
<td>1 kit</td>
<td>$295</td>
</tr>
</tbody>
</table>

Highlights

- Can be used with azide- or alkyne-tagged biopolymers
- The kit includes all necessary reagents*

Click- & Go Protein Capture Kits

All-inclusive kits for covalent capture of azido- or alkyne-tagged proteins on a alkyne- or azide-agarose resin supplied.

<table>
<thead>
<tr>
<th>Product #</th>
<th>Description</th>
<th>Pkg. Size</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1039</td>
<td>Click- & Go Protein Enrichment Kit for capture of alkyne-modified proteins</td>
<td>1 kit</td>
<td>$375</td>
</tr>
<tr>
<td>1033</td>
<td>Click- & Go Protein Enrichment Kit for capture of azide-modified proteins</td>
<td>1 kit</td>
<td>$375</td>
</tr>
</tbody>
</table>

* enrichment media is not provided
Click Functionalized Agarose
Azide, Alkyne, or DBCO modified agarose used for covalent capturing alkyne-, or azide-tagged biopolymers.

<table>
<thead>
<tr>
<th>Product #</th>
<th>Description</th>
<th>Pkg. Size</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1032-2</td>
<td>Alkyne agarose resin, 50% slurry</td>
<td>2 mL</td>
<td>$129</td>
</tr>
<tr>
<td>1038</td>
<td>Azide agarose resin, 50% slurry</td>
<td>2 mL</td>
<td>$129</td>
</tr>
<tr>
<td>1034</td>
<td>DBCO agarose resin, 50% slurry</td>
<td>2 mL</td>
<td>$129</td>
</tr>
</tbody>
</table>

Click Functionalized Magnetic Beads
Azide, Alkyne, or DBCO modified, uniformed magnetic beads used for covalent capturing alkyne-, or azide-tagged biopolymers.

<table>
<thead>
<tr>
<th>Product #</th>
<th>Description</th>
<th>Pkg. Size</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1035</td>
<td>Alkyne Magnetic Beads, 10 mg/mL</td>
<td>1 mL</td>
<td>$139</td>
</tr>
<tr>
<td>1036</td>
<td>Azide Magnetic Beads, 10 mg/mL</td>
<td>1 mL</td>
<td>$139</td>
</tr>
<tr>
<td>1037</td>
<td>DBCO Magnetic Beads, 10 mg/mL</td>
<td>1 mL</td>
<td>$139</td>
</tr>
</tbody>
</table>

Visit www.clickchemistrytools.com for more detailed information
Enrichment Media and Kits

Click-&-Go Protein Capture Kits

All-inclusive kits for covalent capture of azido- or alkyne-tagged proteins on a alkyne- or azide-agarose resin supplied. The kit contains specially formulated components to both catalyze click reaction and prevent non-specific binding to the alkyne-modified resins.

<table>
<thead>
<tr>
<th>Product #</th>
<th>Description</th>
<th>Pkg. Size</th>
<th>Price</th>
</tr>
</thead>
</table>
| 1039 | Click-&-Go Protein Enrichment Kit
for capture of alkyne-modified proteins | 1 kit | $375 |
| 1033 | Click-&-Go Protein Enrichment Kit
for capture of azide-modified proteins | 1 kit | $375 |

Click Chemistry Capture Kit

Click Chemistry Capture Kit provides all necessary auxiliary reagents* for covalent capture of metabolically, azido- or alkyne-tagged proteins. The kit contains specially formulated components to both catalyze click labeling reaction and prevent non-specific binding to alkyne- or azide-modified resins.

<table>
<thead>
<tr>
<th>Product #</th>
<th>Description</th>
<th>Pkg. Size</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1065</td>
<td>Click Chemistry Capture Kit</td>
<td>1 kit</td>
<td>$295</td>
</tr>
</tbody>
</table>

* enrichment media is not provided

Highlights

- Easy to use
- Affordable
- No special equipment required
- The kit includes all necessary reagents

Highlights

- Can be used with alkyne— or azide—tagged biopolymers
- The kit includes all necessary reagents*
Click Functionalized Agarose
Azide, Alkyne, or DBCO modified agarose used for covalent capturing alkyne-, or azide-tagged biopolymers.

<table>
<thead>
<tr>
<th>Product #</th>
<th>Description</th>
<th>Pkg. Size</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1032-2</td>
<td>Alkyne agarose resin, 50% slurry</td>
<td>2 mL</td>
<td>$129</td>
</tr>
<tr>
<td>1038</td>
<td>Azide agarose resin, 50% slurry</td>
<td>2 mL</td>
<td>$129</td>
</tr>
<tr>
<td>1034</td>
<td>DBCO agarose resin, 50% slurry</td>
<td>2 mL</td>
<td>$129</td>
</tr>
</tbody>
</table>

Click Functionalized Magnetic Beads
Azide, Alkyne, or DBCO modified, uniformed magnetic beads used for covalent capturing alkyne-, or azide-tagged biopolymers.

<table>
<thead>
<tr>
<th>Product #</th>
<th>Description</th>
<th>Pkg. Size</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1035</td>
<td>Alkyne Magnetic Beads, 10 mg/mL</td>
<td>1 mL</td>
<td>$139</td>
</tr>
<tr>
<td>1036</td>
<td>Azide Magnetic Beads, 10 mg/mL</td>
<td>1 mL</td>
<td>$139</td>
</tr>
<tr>
<td>1037</td>
<td>DBCO Magnetic Beads, 10 mg/mL</td>
<td>1 mL</td>
<td>$139</td>
</tr>
</tbody>
</table>
Click Chemistry Tools

8341 E. Gelding Drive
Scottsdale, Arizona 85260
USA

Phone: 1 (480) 685-2898
Fax: 1-866-717-2037
Email: inquiries@clickchemistrytools.com
Web: www.clickchemistrytools.com