AFDye 555 Picolyl Azide

Catalog#
Unit Size
Price (USD)
Availability
Qty
1288-1
1 mg
$149.00
Out of stock
1288-5
5 mg
$445.00
Out of stock
1288-25
25 mg
$1,395.00
Out of stock

This product is temporarily unavailable.
Abs/Em Maxima
555/572 nm
Extinction Coefficient
155,000
Flow Cytometry Laser Line
532 nm or 555 nm
Microscopy Laser Line
532 nm or 555 nm
Spectrally Similar Dyes
Alexa Fluor® 555, CF® 555, DyLight® 549, Cy3 Dye
Molecular weight
1049.22 (protonated)
CAS
N/A
Solubility
Water, DMSO, DMF
Purity
>95% (HPLC)
Appearance
Red solid
Storage conditions
-20°C. Desiccate
Shipping conditions
Ambient temperature

AFDye™ 555 Picolyl Azide is an advanced fluorescent probe that incorporates a copper-chelating motif to raise the effective concentration of Cu(I) at the reaction site to boost the efficiency of the CuAAC reaction, resulting in a faster and more biocompatible CuAAC labeling. Up to 40-fold increase of signal intensity, compared to conventional azides, was reported (see Selected References).

In addition, the use picolyl azides instead of conventional azides allows for at least a tenfold reduction in the concentration of the copper catalyst without sacrificing the efficiency of labeling, significantly improving biocompatibility of CuAAC labeling protocol.

In summary, the introduction of a copper-chelating motif into azide probe leads to a substantial increase in the sensitivity and reduced cell toxicity of CuAAC detection alkyne-tagged biomolecules. This will be of special value for the detection of low abundance targets or living system imaging.

AFDye™ 555 Picolyl Azide is a water-soluble, bright orange-fluorescent dye with excitation ideally suited for the 532 nm or 555 nm laser lines and visualized with TRITC (tetramethylrhodamine) filter sets. AFDye™ 555 is structurally similar to Alexa Fluor® 555, and spectrally is almost identical to Cy3 Dye, Alexa Fluor® 555, CF® 555 Dye, or any other Cyanine3 based fluorescent dyes.

Alexa Fluor® 555 is a registered trademark of Thermo Fisher Scientific.

AFDye555

1. Jiang, H., et al. (2014). Monitoring Dynamic Glycosylation in Vivo Using Supersensitive Click Chemistry. Bioconjugate Chem.,, 25, 698-706. [PubMed]

2. Uttamapinant, C., et al. (2012). Fast, Cell-Compatible Click Chemistry with Copper-Chelating Azides for Biomolecular Labeling. Angew. Chem. Int. Ed,., 51, 5852-56. [PubMed]

3. Gaebler, A.,et al. (2016). A highly sensitive protocol for microscopy of alkyne lipids and fluorescently tagged or immunostained proteins. J. Lipid. Res., 57, 1934-47. [PubMed]

Related Products
AFDye 647 DBCO

Excitation maximum: 648 nm
Emission maximum: 671 nm

Add to cart
AFDye 594 DBCO

Excitation maximum: 590 nm
Emission maximum: 617 nm

Add to cart